Deep Transform: Cocktail Party Source Separation via Complex Convolution in a Deep Neural Network

نویسنده

  • Andrew J. R. Simpson
چکیده

Convolutional deep neural networks (DNN) are state of the art in many engineering problems but have not yet addressed the issue of how to deal with complex spectrograms. Here, we use circular statistics to provide a convenient probabilistic estimate of spectrogram phase in a complex convolutional DNN. In a typical cocktail party source separation scenario, we trained a convolutional DNN to re-synthesize the complex spectrograms of two source speech signals given a complex spectrogram of the monaural mixture – a discriminative deep transform (DT). We then used this complex convolutional DT to obtain probabilistic estimates of the magnitude and phase components of the source spectrograms. Our separation results are on a par with equivalent binary-mask based non-complex separation approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Transform: Cocktail Party Source Separation via Probabilistic Re-Synthesis

In cocktail party listening scenarios, the human brain is able to separate competing speech signals. However, the signal processing implemented by the brain to perform cocktail party listening is not well understood. Here, we trained two separate convolutive autoencoder deep neural networks (DNN) to separate monaural and binaural mixtures of two concurrent speech streams. We then used these DNN...

متن کامل

Probabilistic Binary-Mask Cocktail-Party Source Separation in a Convolutional Deep Neural Network

Separation of competing speech is a key challenge in signal processing and a feat routinely performed by the human auditory brain. A long standing benchmark of the spectrogram approach to source separation is known as the ideal binary mask. Here, we train a convolutional deep neural network, on a twospeaker cocktail party problem, to make probabilistic predictions about binary masks. Our result...

متن کامل

Cocktail Party Processing via Structured Prediction

While human listeners excel at selectively attending to a conversation in a cocktail party, machine performance is still far inferior by comparison. We show that the cocktail party problem, or the speech separation problem, can be effectively approached via structured prediction. To account for temporal dynamics in speech, we employ conditional random fields (CRFs) to classify speech dominance ...

متن کامل

Monaural Audio Speaker Separation Using Source-Contrastive Estimation

We propose an algorithm to separate simultaneously speaking persons from each other, the “cocktail party problem”, using a single microphone. Our approach involves a deep recurrent neural networks regression to a vector space that is descriptive of independent speakers. Such a vector space can embed empirically determined speaker characteristics and is optimized by distinguishing between speake...

متن کامل

Monaural Audio Speaker Separation with Source Contrastive Estimation

We propose an algorithm to separate simultaneously speaking persons from each other, the “cocktail party problem”, using a single microphone. Our approach involves a deep recurrent neural networks regression to a vector space that is descriptive of independent speakers. Such a vector space can embed empirically determined speaker characteristics and is optimized by distinguishing between speake...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.02945  شماره 

صفحات  -

تاریخ انتشار 2015